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Highlights 

 We developed new method of integrating classifiers in an ensemble based on 
quantiles. 

 We have shown superiority of our solution on the benchmark problems. 

 We have applied this solution to recognition of melanoma and proved its superiority. 
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Abstract The paper presents a new approach to the dynamic classifier selection in an 

ensemble by applying  the best suited classifier for the particular testing sample. It is based 

on the area under curve (AUC) of the receiver operating characteristic (ROC) of each 

classifier. To allow application of different types of classifiers in an ensemble and to reduce 

the influence of outliers, the quantile representation of the signals is used. The quantiles 

divide the ordered data into essentially equal-sized data subsets providing approximately 

uniform distribution of [0-1] support for each data point. In this way the recognition problem 

is less sensitive to the outliers, scales and noise contained in the input attributes. The 

numerical results presented for the chosen benchmark data-mining sets and for the data-set of 

images representing melanoma and non-melanoma skin lesions have shown high efficiency of 

the proposed approach and superiority to the existing methods. 

 

Keywords: Ensemble of classifiers; dynamic classifier selection; quantiles; data mining; 

machine learning; melanoma. 

 

1. Introduction 

 The combination of many classifiers in an ensemble is a well-known method of increasing 

the quality of recognition and classification tasks (Xu at al., 1992; Kuncheva, 2004; Osowski 

et al., 2008; Omari and Figueiras-Vidal, 2015;Parvin et al. 2015). Each classifier, which relies 

its operation on different principle, may attain different degree of success in a specific 

application problem. Maybe none of them is perfect or as good as expected. Thus, there is a 

need to combine different solutions of classifiers, so that a better result could be obtained. 

Combining many trained networks together helps to integrate the knowledge acquired by the 

component classifiers and in this way to improve the accuracy of the results of final 

classification. 

There are many different solutions to the integration problem. The usual approach relies on 

applying all classifiers from the ensemble to classify the testing patterns and on the basis of 
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their results the final response is formed. Different static fusion strategies are applied in 

practice. Among the most often used is the voting principle organized in different ways, 

application of naive Bayes rule, Dempster-Shafer methods, Kullback-Leibler rule, meta-

evolutionary ensemble, principal component analysis or application of additional integrating 

classifier (Xu at al., 1992; Kuncheva, 2004; Osowski et al., 2008; Haghighi et al. 2011; Kim 

et al. 2006; Omari and Figueiras-Vidal, 2015). Boosting, bagging, random subspace methods 

play a major part of such solutions (Efron and Tibshirani, 1993; Friedman et al., 2000). These 

rules take into account all classifiers of an ensemble to perform the classification task and 

then exploit the statistics of their results to elaborate the final classification decision.  

This paper applies different strategy, called in general dynamic classifier selection (DCS) 

(Didaci et al., 2005; Britto et al., 2014; Parvin et al., 2015; Ko et al., 2008). The final 

classification of each testing sample is done by only one classifier from an ensemble, which is 

the best suited to the particular analyzed task. The best classifier is selected on the basis of its 

local discriminatory power in the neighborhood of the testing sample. Closely, we examine 

the generalization ability of all classifiers in the neighborhood of the testing sample. In 

computation of the discriminatory power of the classifier we assign higher weights to the 

analyzed observations which are closer to the actual testing sample. Selection of the best 

suited classifier is dependent on the distance of the testing sample to the samples used in 

learning. The selection is done by estimating the competence of the classifiers available in the 

pool on local regions of the feature space. In this way the classifier of the highest 

classification accuracy in the region is chosen. Thanks to this we are able to achieve the 

highest yield, since each classification task is performed by the classifier best suited to this 

particular task.  

Comprehensive review of DCS is done in recent publications (Didaci et al., 2005; Britto et 

al., 2014; Parvin et al., 2015; Ko et al., 2008). The most important point in DCS is to select 

the most accurate classifier in the neighborhood of the analyzed sample. Different approaches 

are used in this task: the overall local accuracy, local class accuracy, a priori selection, a 

posteriori selection or k-nearest oracle (Didaci et al., 2005). All of them are done on the 

original data points. Another approach combines static ensemble with DCS (Parvin et al., 

2015), by selecting classifiers based on clustering principle. The DCS has been also extended 

to selection of an ensemble for every test data point (Ko et al., 2008). These classical 

approaches to selection of the most accurate classifier suffer from such problems, as different 

ranges of output signals of used classifiers, influence of outliers and noise contaminating data 
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or difficult choice of number of learning samples taken into account in the process of the best 

classifier selection. 

Our approach avoids most of these problems by applying the quantile representation of 

data. The quantiles divide the ordered data into essentially equal-sized data subsets providing 

approximately uniform distribution of [0-1] support for each data point. Thanks to this the 

recognition problem is less sensitive to the outliers, scales and noise contained in the input 

attributes. Additionally, they form an ideal platform for cooperation of different types of 

classifiers arranged in an ensemble. Moreover, we propose novel way of choosing the best 

suited classifier for the particular testing sample. The choice is done on the basis of the area 

under curve (AUC) of the receiver operating characteristic (ROC) of each classifier. 

The experiments performed on the benchmark problems and on the real task of recognition 

of melanoma from the non-melanoma lesions have shown very high efficiency of the 

proposed approach. In all cases the results of our method were better in the classification 

accuracy than the stand alone individual solutions. 

 The outline of the paper is as follows. Section 2 introduces the quantile representation of 

data. Section 3 presents the general description of the presented approach. Section 4 is 

devoted to the application of quantiles in classification of the data. The results of numerical 

experiments performed on the benchmark data are presented in section 5. Section 6 is devoted 

to the real problem of melanoma recognition. The quality of solution is measured on the basis 

of area under ROC curve in all these experiments and the accuracy of class recognition. The 

last section presents the conclusions. 

 

2.  Quantile representation of data 

In our approach the important role is fulfilled by the quantile representation of the data 

(Chu and Nakayama, 2010; Matlab, 2012). Quantiles are the points taken at the regular 

intervals from the cumulative distribution function (CDF) of a random variable. They mark 

the boundaries between consecutive subsets. Let us assume there is a given feature (variable) 

x of the particular values x1, x2, …, xn. The empirical cumulative distribution function is 

defined by the formula 

 
n

xxx
xF ii 


:#
)(    (2) 

for all Rx . Formally, the quantile of order p is defined by: 

 pxFxqp  )(:min    (3) 
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Roughly speaking, it means the quantile of the order p divides the ordered series of the 

random variable into two subsets in the proportions: p and 1-p.  

For estimating a quantile representation we have used the Matlab function tiedrank (Matlab, 

2012) applied in the Matlab notation as (2*tiedrank(x)-1)/(2*length(x)). For example, let us 

consider the data in the ordered series of random variable as shown in the first column of the 

Table 1. 

 

Table 1  

The exemplary series of data (column 1) and the corresponding quantiles (column 2). 

qp p 

-3 0,0555 

4 0,2222 

4 0,2222 

5 0,3889 

100 0,5000 

1001 0,72220 

1001 0,7222 

1001 0,7222 

2000 0,9444 

 

We get their quantile representation of the form expressed in column 2 of the table (variable 

p). Observe that irrespective of the distribution of the original series, the quantile 

representation is always uniform and is in the range [0, 1]. The observations, which are far 

from each other in original space (for example 1001 and 2000), may be very close in the 

quantile representation (0.7222 and 0.9444, respectively). It depends only on their positions in 

the ordered series.  

The quantiles are useful measures because they are less sensitive to the fat-tailed 

distributions and outliers. At the same time they are well supported by the functions quantile 

and tiedrank of Matlab. 

 

3. The proposed classification method – general description 

Let us assume the data set X containing K observations, each characterized by N variables 

(input attributes). The observations are associated with the proper destination vector d 

representing classes to which the observations belong.  
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Consider one testing observation denoted by xt and its proper class represented by }1,0{
t

d . 

In further considerations we assume the binary classifiers. Assume M classifiers employed to 

solve the classification problem. Our task is to choose the classifier of the best generalization 

ability to recognize and classify the testing sample. The proposed procedure is as following. 

First, apply the bootstrap strategy (Efron and Tibshirani, 1993; Friedman et al., 2000) to 

the data set (X, d) of K observations. A bootstrap set is created by sampling K instances 

uniformly from the original data (with replacement). This bootstrap set is split into the 

learning samples (XL, dL) containing 75% of data and validation set (XV, dV) of the remaining 

25% samples.  

To provide the proportional representation of classes in the sets, we first separate the 

samples of both classes. For each class, 75% of observations form the potential learning set 

and the remaining 25% the validation set. Then, we apply the bootstrap strategy for each of 

these 4 groups of data. The bootstrap selection is repeated as many times as is the number of 

observations in each subgroup. In the last step, we fuse the learning subsets of both classes, 

forming the final learning set and in the same way we fuse two validation subsets to form the 

final validation set. The learning set selected in this way is used as the learning base for all 

classifiers included in an ensemble. The learned classifiers are tested on the validation data 

set. 

In the next step, we check the generalization ability of each member of an ensemble, paying 

the greatest attention to the samples placed in the neighborhood of the testing sample xt. This 

process is done using the validation set (XV, dV). We calculate the Euclidean distance of xt to 

each sample of the validation set. The calculations are performed using the quantile 

representation of the samples (Chu and Nakayama, 2010; Matlab, 2012). The quantiles 

provide approximately uniform distribution of [0-1] support for each feature. Thanks to this 

we get higher resistance to the outliers and varying distributions or scales of the input 

attributes.  

As a result, we get the distance of all validation samples of Xv to the testing sample xt. 

These distances will be associated with the weights. The closer is the distance the higher 

weight is associated with the particular validation sample. In this way the higher weights 

correspond to higher similarity of the testing sample xt to the actual sample from the set Xv . 
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In the experiments we have limited the highest weight to three and the lowest to one. All other 

weights have been distributed linearly between these two extreme values. 

In the following step we create the weighted receiver operating characteristic (ROC) curve 

representing the relation between the true positive rate and false positive rate for the samples 

from the validation data set (Tan et al., 2006). In forming ROC curve we take into account the 

weights associated with the samples, duplicating them proportionally to their weight value. 

Each sample of weight w is duplicated w times in the process of ROC forming. In this way we 

include the information of proximity of the tested sample to the samples of the validation set.  

The ability of the classifier to proper classifying the sample xt is measured by the area 

under the weighted ROC curve (AUC) created for the validation set. The AUC reflects the 

probability of correct recognition of classes. It was shown for the balanced classes (Ali and 

Deserno, 2012) that when the AUC value is in the range (0.9 – 1) the accuracy of class 

recognition is excellent. When this value is within the range (0.8 – 0.9) the accuracy is good. 

The value of AUC below 0.8 corresponds to fair or poor accuracy. Therefore, the closer this 

area to the value of 1, the better is the classifier.  

We perform the classification steps, i.e. boosting and sampling of the validation set and 

learning and testing procedures m times (in this research, m=100) for each classifier from the 

ensemble. Taking the mean value of the weighted AUC at many bootstrap resampling, we 

obtain an objective assessment of the discriminatory power of the particular classifier for the 

sample xt under recognition. In each case the classifier chosen to do the classification task of 

the testing sample is the one, which has the highest value of the average weighted AUC 

obtained in all trials. This procedure can be summarized by the following pseudo code. 

 

for j=1:m 

begin 

-draw bootstrap samples: XL and XV for i
th

 classifier, i = 1,2, …, M; 

-learn ith classifier on XL and test on XV and xt; 

-transform the continuous outputs of the classifiers for testing data into ordered quantile representation; 

-calculate the distance between the quantile representation of XV and xt; 

-associate higher weights to the XV samples which are closer to xt; 

-create the weighted ROC for the samples of XV and -calculate the weighted AUC for each classifier; 

end 

calculate the average weighted AUC for each classifier and choose the classifier of the highest value of AUC 

for the analyzed sample xt. . 
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Let us consider now many testing samples xt. While repeating the presented above 

procedure on this set, we select the best classifier for each testing sample. However, the 

chosen classifiers may produce the continuous output signals in different ranges of values. For 

example, the logistic regression classifier produces the output signal in the range [0, 1], while 

the SVM classifier signal y(x) may take any real value. The important point is to find the 

common platform for all classifiers, in which all output signals are in the unified range [0, 1]. 

We solve this problem using again the quantile representation of the output signals. The 

chosen (best) classifier is learnt and tested on the whole available data set X and then tested 

on the actual testing sample xt. In each case, we get the continuous output signals from the 

classifier (before applying the sign operation). The set of the output signals on the data set X 

and the output of the testing sample are converted to the common quantile representation in 

the normalized range [0, 1]. The output signal of the testing sample is associated with the 

proper order of quantiles in the combined set. Thanks to this we avoid the problem of 

diversity of types of the output signals of the applied classifiers, since the quantile 

representation is always in the range [0, 1], irrespective of the applied classifier.  

Each sample xt from the testing set is classified by the locally best classifier according to its 

quantile order. For example, the output signal of the best classifier for the i
th

 sample is equal 

to 0.8674 and for the j
th

 one is equal to 0.2347. The first result is closer to one, so it will be 

associated with the class one. The second is closer to zero, hence it will be associated with the 

alternative class. The point discriminating two classes may be set on the level chosen by the 

user, however, the typical threshold is 0.5 in the case of balanced classes.  

 

4. Application of quantiles in classification 

In the following subsections we introduce the details of our approach, starting from 

application of quantiles in selecting the best classifiers up to formation of weighted AUC of 

the ROC characteristics. 

 

 4.1 Weighted AUC formation using quantile representation 

The quantile representation is used by us to create the weighted AUC for the testing data. 

To explain the details of this approach let us take the exemplary validation data set XV and 

testing vector xt in the form shown in Table 2, where each row represents observation and 

column the variable. The quantile representation is built for each column separately.  

On the basis of the quantile representation we calculate the Euclidean distance between xt 

and each row of XV. Next, each row of XV is weighted in a reverse order. The vector closest 
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to xt is associated with the highest weight (the value 3 was assumed in experiments) and the 

farthest one with the smallest weight (the value of 1). For intermediate points, the linear 

weighting between 3 and 1 was applied. 

 

Table 2 

Transformation of observations into their quantile representations. 

O
b

se
rv

at
io

n
s 

Original data Quantile representation 

XV 

1.1 -100 200 324 0.3333 0.1666 0.8333 0.8333 

-2.3 200 4.5 52 0.1666 0.5000 0.2777 0.5000 

1.1 -400 -3 5 0.3333 0.0555 0.0555 0.1666 

4.5 200 24 5 0.7222 0.5000 0.5000 0.1666 

5.7 300 354 2345 0.8333 0.7777 0.9444 0.9444 

8.9 200 31 55 0.9444 0.5000 0.6111 0.6111 

-4.3 300 53 35 0.0555 0.7777 0.7222 0.3888 

3.1 150 15 5 0.6111 0.2777 0.3888 0.1666 

xt 2.5 500 2 100 0.5000 0.9444 0.1666 0.7222 

 

Table 3 presents the original Euclidean distances between the vectors (rows) of XV and vector 

xt in the example (all in quantile representations). The column denoted by “Weights” 

represents the weights associated with the succeeding samples (rows) of observations. 

 

Table 3 

The original Euclidean distances between xt and observations from Xv and the corresponding 

weights associated with the observations. 

Observations Original 

distance 

Weight 

1 1.04379 1.1020 

2 0.60858 3.0000 

3 1.06719 1.0000 

4 0.81650 2.0933 

5 0.89062 1.7700 

6 0.77778 2.2621 

7 0.80316 2.1514 

8 0.90267 1.7175 
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Then, we form the weighted ROC before computing the weighted AUC. In the process of 

calculating the true positive and false positive cases in ROC creation, we take into account not 

the real number of samples satisfying the appropriate conditions, but the sum of weights 

associated with these samples.  

 

 4.2 Selecting the best classifier for testing samples using quantiles 

Applying the procedure described above, we can select the classifier, which is the most 

suitable for the classification of the particular tested sample xt . This is the classifier of the 

highest value of the mean of the weighted AUC, built on the basis of the validation set. 

Different type classifiers may be found as the best for the particular testing samples. 

Therefore, we should take into account, that their output signals may be placed in different 

ranges of values. To create common platform, we have to transform their outputs to the 

unified range of [0, 1]. To solve the problem, we have used once again the quantile approach. 

In this approach the best classifier is learnt on the whole data set X and then tested on both: 

learning data (output set Y) and the testing sample xt (output y(xt)). As a result we get the 

output signals of the classifier in the form of common set [Y; y(xt)]. They are represented as 

the continuous signals (before application of sign function). 

This common set of signals is converted to the quantile representation, including the tested 

signal y(xt). In this way we get automatically the quantile value associated with y(xt). The 

final class recognition of the sample xt depends on this value. If it is above the threshold we 

recognize sample as the class one. In the opposite case xt is associated with the alternative 

class. 

 

5. Empirical results of experiments on benchmark data 

The proposed approach to classification problem was first tested on the 2-class benchmark 

problems taken from (UCI, 2014). The following benchmark problems have been considered: 

breast cancer, flare, soybean, credit cards, glass, heart, diabetes and horse. The data values of 

all problems were prepared in the same way. The nominal and discrete variables were coded 

using weights of evidence (WOE) technique (Bonham-Carter et al., 1989; Zhixiao, 2013). The 

basic characteristics of data sets are presented in Table 4.  

 The set of classifiers taking part in experiments was composed of the following units: 

1. Support Vector Machine of Gaussian kernel (SVMG) of sigma=1 and regularization 

factor C=1 (Scholkopf and Smola, 2002). 

2. SVM of linear kernel (SVML) and C=1 (Scholkopf and Smola, 2002). 
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3. Decision tree (DT) (Rokach, 2008). 

4. Multilayer perceptron (MLP) of 3 neurons in hidden layer and tansig as an activation 

function (Haykin, 2000). 

5. Fuzzy K-nearest neighbor classifier (FKNN) of 5 neighbors (Keller et al., 1985). 

6. Logistic regression based on generalized linear model (LR) with link logit and 

binomial distribution (Tomassi et al., 2006). 

7. The proposed ensemble of the above classifiers, applying local discriminatory power 

and quantiles (denoted further by LDPQ). 

8. The comparative approach to DCS based on local accuracy estimation (DCS-LA) 

(Didaci et al., 2005) 

 

Table 4  

The characterization of the 2-class benchmark data. 

Name of 

problem 

Dimension of 

input vector 

Population of 

one class 

Population of 

second class 

Breast Cancer 9 458 241 

Flare 10 884 112 

Soybean 35 40 40 

Credit cards 15 383 307 

Glass 9 70 76 

Heart 13 441 265 

Diabetes 8 500 268 

Horse 20 224 88 

 

The internal parameters of the individual classifiers were not optimized. Our aim in this part 

of experiments is to show that application of the proposed approach allows improvs the final 

results of class recognition. The results of classification in the form of AUC values for each 

benchmark problem are presented in Table 5.  

The succeeding columns from 1 to 6 correspond to the results of application of the 

particular classifier, learned in a classical way. Column 7 depicts the results of application of 

our ensemble strategy of classification (LDPQ). Last column presents the comparative results 

of application of DCS with the local accuracy estimation “a posteriori” (DCS-LA), the 

alternative solution of dynamic classifier selection presented in the paper (Didaci et. al., 
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2005). All results correspond to the application of leave-one-out procedure (Haykin, 2000). 

By the bold we denote the best result of classification. 

 Note, that the final solution selected on the basis of set of six predefined classifiers for 

each observation has been chosen by the dynamic selection approach (two last columns). 

With the fixed parameters of the classifiers we were able to improve the classification results 

almost in all cases by using our approach (LDPQ). The only exceptions were the credit card 

problem, where the linear SVM classifier was better and soybean problem, where DCS-LA 

method was slightly better. 

 

Table 5 

The values of AUC in the benchmark class recognition problems 

Benchmark 

problem 

Classification system 

SVMG SVML DT MLP FKNN LR LDPQ DCS-LA 

Breast Cancer 0.985 0.991 0.969 0.985 0.985 0.991 0.992 0.984 

Flare 0.529 0.494 0.535 0.657 0.521 0.673 0.693 0.585 

Soybean 0.970 0.999 0.986 0.967 0.961 0.986 0.999 1.000 

Credit cards 0.906 0.938 0.904 0.924 0.904 0.931 0.934 0.912 

Glass 0.924 0.730 0.777 0.738 0.921 0.716 0.950 0.835 

Heart 0.788 0.862 0.767 0.848 0.805 0.867 0.871 0.843 

Diabetes 0.779 0.833 0.726 0.813 0.764 0.835 0.838 0.803 

Horse 0.634 0.680 0.740 0.721 0.762 0.811 0.816 0.751 

 

Table 6 presents the percentage of observations for which the particular classifiers were 

chosen as the best in LDPQ. In three cases (breast cancer, credit cards and heart) our system 

has chosen the solution of only one type of classifier. In the remaining cases, different 

classifiers have been selected for doing the classifications task. Observe that applying 

different system of interpreting the output signals (ordinary numerical values of individual 

classifiers and quantile interpretation of results in the proposed ensemble) has resulted in 

slight differences even in the case when only one classifier was selected for recognition of all 

samples. 
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Table 6  

The percentage of observations for which the particular classifiers were chosen as the best. 

Benchmark 

problem 

Classifiers 

SVMG SVML DT MLP FKNN LR 

Breast Cancer 0,00% 0,00% 100,00% 0,00% 0,00% 0,00% 

Flare 0,60% 97,69% 1,71% 0,00% 0,00% 0,00% 

Soybean 0,00% 0,00% 0,00% 7,50% 92,50% 0,00% 

Credit cards 0,00% 100,00% 0,00% 0,00% 0,00% 0,00% 

Glass 0,00% 69,87% 0,00% 4,79% 0,00% 25,34% 

Heart 0,00% 100,00% 0,00% 0,00% 0,00% 0,00% 

Diabetes 0,00% 96,87% 3,13% 0,00% 0,00% 0,00% 

Horse 23,08% 44,23% 18,27% 14,42% 0,00% 0,00% 

 

The presented dynamic classifier selection approach to the benchmark problems has been also 

compared based on the accuracy of classification. Once again the local accuracy (DCS-LA) 

approach applying “a posteriori” estimation has been used (Didaci et. al., 2005) for 

comparative analysis. Table 7 presents the numerical results of such comparison. 

 

Table 7  

The comparison of accuracy of class recognition in benchmark problems  

 
SVMG SVML DT MLP FKNN LR LDPQ DCS-LA 

Breast Cancer 0,96 0,96 0,95 0,96 0,97 0,97 0,971 0,961 

Flare 0,77 0,18 0,65 0,60 0,52 0,67 0,784 0,883 

Soybean 0,95 0,98 0,98 0,92 0,92 0,97 0,992 0,951 

Credit cards 0,86 0,88 0,86 0,86 0,86 0,87 0,881 0,852 

Glass 0,86 0,73 0,77 0,72 0,84 0,68 0,923 0,810 

Heart 0,74 0,77 0,76 0,78 0,71 0,77 0,784 0,763 

Diabetes 0,72 0,74 0,72 0,73 0,71 0,74 0,772 0,731 

Horse 0,74 0,66 0,72 0,66 0,69 0,73 0,754 0,740 

  

The results presented in columns LDPQ are superior to the DCS-LA fusion method. Only in 

one case (Flare) the DCS-LA approach was better. 

 The LDPQ approach presented by us for benchmark problems was found superior also to 

the static fusion of an ensemble. For example the same breast cancer problem solution using 
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the ensemble of classifiers was considered in (Haghighi et al. 2011). The authors have 

reported the following accuracy rates: 96.5% in majority voting, 96.25% in Dempster-Shafer 

method, 96.5% in decision template and 96.85% in extended decision template approach. The 

accuracy of class recognition in our method was 97.1% and AUC measure of 0.992.  

 The same problems of credit cards and diabetes have been considered in (Kim et al. 2006) 

by using the meta-evolutionary approach to fusion. In the case of credit cards the reported 

accuracy was 86.4%. Our result for the same data set was 88.1% and it corresponds to the 

AUC equal 9.935. The two classes in diabetes problem have been recognized in the same 

paper with the accuracy of 76.8%, while our result is 77.2% and AUC=0.838. 

  Our results are also superior to these obtained by using the specialized individual methods 

(SVM, naïve Bayes, decision tree) applied to the same benchmark problems. For example, the 

best breast cancer and credit cards recognition results presented in (Huang and Ling, 2005) 

show AUC=0.973 and accuracy 96.5% for breast cancer and AUC=0.904, and 

accuracy=86.5% for credit cards.  

 

6. Application of proposed approach to melanoma recognition 

The proposed solution was applied for the real-world problem of recognition of melanoma 

and non-melanoma lesions of the skin. Melanoma belongs to the most dangerous human skin 

disease (Ganster et al., 2001;Zagrouba and Barhoumi, 2004). Early recognized melanoma 

changes allow the patient to recover completely. Therefore, the early diagnosis of lesion 

image of the skin is a crucial issue for dermatologists. Lesions can vary in color, saturation, 

shape and size. Fig. 1 shows examples of two images of melanoma and two of non-melanoma 

lesions.  
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a)  c)  

b)  d)  

Fig. 1. Examples of images of melanoma and non-melanoma of the skin: a, b) melanoma, c, 

d) non-melanona lesions. 

 

There are many approaches to the automatic melanoma recognition. Different techniques of 

image preprocessing and classification methods have been proposed up to date (Ganster et al., 

2001; Zagrouba and Barhoumi, 2004; Abbas et al., 2013; Aswin et al., 2013, Sheha et a., 

2012). However, the obtained accuracy is still not satisfactory and can be improved by 

applying more sophisticated approaches to the classification.  

The preprocessing of the acquired images to get their characterization in a numerical form 

(diagnostic features) includes such steps as segmentation of the lesions from the surrounding 

skin, filtering for removing the noise, and finally their transformation into diagnostic features. 

In this paper, we have applied the procedure proposed in the papers (Zagrouba and Barhoumi, 

2004; Abbas et al., 2013). As a result, we got the dermatoscopic features applying the ABCD 

descriptions (A- asymmetry, B – border irregularity, C – color variation, D – diameter) of the 

skin lesion. These features form the input attributes to the classifiers.  
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Nine parameters based on ABCD description have been defined and applied in 

experiments. They include: the asymmetry index, lengthening index of the lesion, 

compactness index, border irregularity index, mean and variance of the gradient magnitude of 

edge abruptness, color homogeneity, correlation between geometry and photometry and 

fractal dimension (Zagrouba and Barhoumi, 2004). 

The numerical experiments have been performed on a set of 200 RGB images, where 120 

images represented the melanoma and the rest the non-melanoma lesions. All images were of 

150×150 pixels size with the spatial resolution of 0.234mm×0.234mm per pixel. The images 

used BMP format coded in 24 bits representing three colors: red, green and blue. Each image 

has one lesion region located near the center. The lesion changes are surrounded by the 

normal skin of variable hue. 

The images have been transformed to nine features as indicated above. These features form 

the input attributes applied to the ensemble of 6 classifiers, defined earlier in this paper. The 

parameter values of the classifiers were the same as in the benchmark data. The individual 

classifiers (from 1 to 6) have been trained and tested in a classical mode without using the 

concept of quantiles. The experiments have been performed in the cross-validation leave-one-

out mode (Haykin, 2000). We compare the results of application of individual classifiers 

working in a classical mode to the results of their ensemble integrated by using our approach.  

The numerical results for each individual classifier and the applied ensemble, as well as 

DCS-LA approach are presented in Table 8. The second row (denoted as AUC) represents the 

area under ROC curve. The third row depicts the percentage of cases (pc) for which the 

particular classifier was selected as the best in an ensemble. 

It is evident that the quality of melanoma recognition performed by the individual 

classifiers arranged in a classical way (one classifier recognizes all samples) is poor. 

However, organizing them in an ensemble integrated by our approach has resulted in a 

significant improvement. The AUC for the best individual classifier was 0.665. After LDPD 

integration this value was increased to 0.924. The improvement was possible thanks to the 

fact that for each testing sample the best performing classifier was used. As a result of such 

organization of classification almost all classifiers took part in the recognition process. The 

third row of the table confirms this fact. Once again our approach to the dynamic classifier 

selection performed better than the comparative DCS-LA.  

 

Table 8  

The averaged results of AUC in recognition of melanoma and non-melanoma lesions. 
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Classifiers SVMG SVML DT MLP FKNN LR LDPQ DCS-LA 

AUC 0,665 0,303 0,567 0,653 0,632 0,640 0,924 0.671 

pc 13% 0 30% 41% 1% 15%   

 

Fig. 2 presents the exemplary ROC curve in one of the cross-validation experiments. The 

area under curve is the assumed measure of the quality of the applied classification approach. 

It is evident, that the best result corresponds to LDPQ. The average sensitivity of this method 

calculated over 100 trials was above 93%.  

 

Fig. 2 The exemplary ROC curves obtained in recognition of melanoma cases by using 

different classification systems. 

 

Table 9 presents the accuracy of melanoma recognition by the individual classifiers and their 

ensemble aggregated using our approach and the local accuracy method presented in (Didaci 

et al., 2005). In this particular application the advantage of our method is evident.  

 

Table 9  

The comparison of accuracy of class recognition for melanoma  

SVMG SVML DT MLP FKNN LR LDPQ DCS-LA 
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0,16 0,67 0,64 0,49 0,75 0,63 0,98 0,80 

 

The obtained results using the proposed dynamic ensemble are also well compared to the 

results reported in recent publications. For example the sensitivity declared in the paper 

(Ganster et al., 2001) was 87%, 75.1% in (Zagrouba and Barhoumi, 2004), 88.2%, in (Abbas 

et al., 2013), 84%, in (Aswin et al., 2013) and from 70.5% to 92.3% in (Sheha et al., 2012). 

Our sensitivity result of 93% is among the best. Moreover, it should be noted that we applied 

the classifiers of the standard (not optimized) parameters. Our main task in the paper was to 

show that lower quality classifiers combined in an ensemble integrated by using our approach 

are able to achieve very good accuracy of performance. 

 

7. Conclusions 

The paper has presented the novel approach to the dynamic classifier selection in the 

integration of classifiers in an ensemble, based on the local discriminatory power and quantile 

representation of data. Instead of taking into account the results of all classifiers, only one, the 

best suited to the particular task, is chosen. Thanks to this the final result is never decreased 

by the least efficient classifier and the overall statistical accuracy and sensitivity of the class 

recognition is enhanced. 

 The most important difference to the existing methods of DCS (Didaci et al. 2005; Britto et 

al., 2014; Parvin et al., 2015; Ko et al., 2008) is the way of choosing the best suited classifier 

for the testing sample. This choice is done on the basis of the area under curve of the receiver 

operating characteristic of each classifier. AUC is recently regarded as the most objective way 

of comparing the quality of classifiers (Tan et al., 2006). In this way the choice is always 

optimal and at the same time insensitive to the number of samples taken into account in the 

neighborhood of the testing sample.  

 Application of the quantile representation of data has allowed avoiding many common 

problems in pattern recognition, such as sensitivity to the outliers and the noise or difference 

of output ranges of individual classifiers in an ensemble. The quantile method allows reducing 

the influence of the noise contaminating the input data. Additionally, it forms an ideal 

platform for cooperation of different types of classifiers arranged in an ensemble.  

The statistical results performed on the benchmark problems have shown the superiority of 

our approach to the dynamic classifier selection over the already existing techniques of DCS. 

Moreover, our dynamic ensemble scheme performed better than other investigated static 

fusion methods. Very good results have been obtained for demanding task of melanoma 
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recognition. The most objective measure of the classification quality (AUC) achieved by us in 

this case has assumed the value of 0.924, much larger than the values of AUC corresponding 

to individual classifiers. 

The benefits of our method may be limited when small amount of training data is available, 

or when the classification accuracy of individual classifiers is sufficiently high. In such cases 

the traditional approach to fusion of ensemble may be competitive. Some questions and 

problems regarding future practical applications in pattern recognition problems may arrive 

also for large number of classes. Higher number of recognized classes leads to more complex 

pattern recognition task, which results in increasing the computational cost. There will be the 

need for optimizing the computation algorithm, leading to acceleration of the problem 

solution. However, in these problems DCS approach to classification represents great 

potential, since such tasks are usually too complex for most individual classifiers.  

It is important also to continue study of the influence of the choice of classifiers forming an 

ensemble on the performance quality of DCS, especially in the high dimensionality complex 

classification problems. Another problem worth of study is extension of our dynamic 

classifier selection to dynamic ensemble selection, in which best ensemble of classifier will be 

chosen for each testing sample. The additional direction of study is the extension of the 

method to the regression problems, through the choice of the best individual regressors 

minimizing the objective function in the neighborhood of the testing sample. 
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