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The paper proposes the new numerical descriptor of the texture based on the Kolmogorov–Smirnov (KS)
statistical distance. In this approach to feature generation we consider the distribution of the pixel inten-
sity placed in equal circular distances from the central point. In this statistical analysis each pixel of the
image takes the role of the central point and KS statistics is estimated for the whole image. We determine
the KS distance of pixel intensity corresponding to the coaxial rings of the increasing distance from the
center. The slope of the linear regression function applied for approximating the characteristics present-
ing KS distance versus the geometrical distance of these rings, forms the proposed statistical descriptor of
the image. We show the application of this numerical description for recognition of the set of images of
soil of different type and show that it behaves very well as the diagnostic feature, better than texture
Haralick features.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Texture analysis and characterization form an active research
topic in computer vision and pattern recognition. The recognition
of texture images requires describing them by the set of numerical
descriptors, well discriminating classes. These descriptors are
responsible for characterizing the properties of the image and com-
puting their similarities. In other words, they make it possible to
rank texture images according to their visual properties
(Gonzalez & Woods, 2011; Wagner, 1999).

Among many known methods of texture characterization to the
most known belong the co-occurrence matrices, Markov random
field models, wavelet and Fourier transformations, as well as local
binary pattern and its variations (Chen & Kundu, 1994; Nanni,
Lumini, & Brahnam, 2012; Ojala, Pietikainen, & Maenpaa, 2002;
Wagner, 1999). All these methods of texture analysis exploit the
statistics of the images, however, each of them in a different
way. Co-occurrence matrix is relied on the original values of pixel
intensities. In wavelet and Fourier approaches the image is first
transformed and the statistics is based on the transformed values
of pixel intensities. Markov random field texture model is charac-
terized by geometric structure and quantitative strength of
interactions among the neighboring pixels taking into account
the conditional probability of signals in the neighborhood of the
pixels.

Texture descriptors of images are widely applied in different
fields of research, including generation of features for recognition
of medical objects (Demidenko, 2004; Ojala et al., 2002), face rec-
ognition (Ahonen, Matas, He, & Pietikainen, 2009), recognition of
objects in the nature (Pauwels & Frederix, 2000), recognition of dif-
ferent minerals (Bianconi, Gonzalez, Fernandez, & Saetta, 2012),
etc. The important problem in the task of texture characterization
is assuring the image invariance to the spatial scale, orientation
and grayscale properties. A number of techniques incorporating
these invariances have been proposed in the mentioned papers.

The effectiveness of content-based image recognition systems are
very dependent on the image descriptors that are being used. In spite
of the large number of methods there is still a search for the others,
which allow to expand the image characterization from the other
point of view. The higher the number of independent descriptors
of high quality, the better is the expected efficiency of an automatic
recognition system, using them as the diagnostic features.

In this paper we propose the new numerical descriptor of the
images based on the Kolmogorov–Smirnov (KS) statistical distance
(Corder & Foreman, 2009; Sprent & Smeeton, 2010). Some proposi-
tions of applying this statistical measure to the medical image
characterization have been already presented in (Demidenko,
2004). The other application of KS statistics to texture segmenta-
tion has been also presented in (Pauwels & Frederix, 2000). All of
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them apply the KS statistics for the non-parametric density estima-
tion of the whole images. On the basis of such analysis the classi-
fication results are based.

We propose to go step ahead and extend the KS statistics to the
parametric characterization of the texture image divided into
smaller sub-images. We introduce special measure based on the
KS distance between different sub-regions of the image. From this
point of view our proposition is resembles and forms the extension
of the concept of local binary pattern and its variations (Ahonen
et al., 2009; Ojala et al., 2002).

The proposed method provides the invariance to the scale, ori-
entation and rotation of the image. We consider the distribution of
the pixel intensities placed in equal circular distances from the
central point. In this statistical analysis each pixel of the image
takes the role of the central point. The KS statistics regarding the
coaxial rings around it are estimated. On the basis of such analysis
we determine the KS distance of pixel intensities corresponding to
the coaxial rings of the increasing distance from the center. The
slope of the linear regression applied to approximate the charac-
teristics presenting KS distance versus the geometrical distance
between these rings, forms the new statistical descriptor of the
image.

To illustrate our considerations we apply the method for recog-
nition of the texture images representing 12 different classes of soil
or pebbles. We show that our proposed descriptor characterizes
well the classes of the images under recognition. We compare its
performance to the other descriptors following from the well
known Haralick gray-level co-occurrence matrices approach
(Wagner, 1999) and found it competitive. In our opinion the pro-
posed descriptor may be successfully used as the diagnostic feature
in the process of automatic recognition of the texture images.
2. The basic idea of the method

Let us assume we observe one chosen point of the image and
the distribution of pixel intensities around this point at increasing
distance in coaxial rings. In particular we are interested in intensi-
ties of pixels placed in the rings of the increasing geometrical dis-
tances from the central point. Such division of the images into
coaxial rings of the width equal 3 pixels is illustrated in Fig. 1.
The central point in our analysis will travel along all pixels of the
Fig. 1. The illustration of the division of the image into the coaxial rings around the
central point.
image and the results of the statistical analyses will be combined
together by concatenating the pixel intensities corresponding to
the same rings placed in equal distances, at different positions of
the central pixel.

In the analysis we estimate the cumulative Kolmogorov–Smir-
nov distances (Corder & Foreman, 2009) between the intensity of
pixels xi and xj (samples) belonging to two different rings using
Kolmogorov–Smirnov test. The KS test determines if the samples
are drawn from the same underlying continuous population char-
acterized by the cumulative distributions F(xi) and F(xj). The dis-
tance between these two populations is defined by the KS test in
the form

dKS ¼max jFðxiÞ � FðxjÞj ð1Þ

over all x. This distance may be regarded as the measure of differ-
ence between the distributions of both populations.

We calculate the KS distance for all combinations of two rings.
As a result of it we get a set of KS statistics corresponding to differ-
ent levels of such differences. Level 1 collects the results corre-
sponding to KS differences of the neighboring rings, i.e., rings 1
and 2, 2 and 3, 3 and 4, etc. Level 2 corresponds to the KS differ-
ences of rings distant by 2, for example 1 and 3, 2 and 4, 3 and 5
etc. In this way we collect the KS distances corresponding to the
same differences of rings for each level.

Let us take the exemplary image of the soil (bentonite) pre-
sented in Fig. 2. We have analyzed it by assuming the width of
rings equal 3 pixels and by changing the positions of central point
of rings, placed in all pixels of the image. To make the objective
comparison of the rings of different sizes we have limited the num-
ber of pixels in the estimation process. To make the choice even
most objective we perform 1000 runs at random choice of the
group of 25 pixels from the ring areas (25,000 pixels totally taken
into account in the statistics). The number 25 follows from the lim-
ited number of pixels in the rings close to the central point. The
1000 repetitions of the set of 25 points in estimation of KS distance
have provided the reliable statistics. On the basis of many intro-
ductory experiments performed for different types of texture we
have found that such choice results in a credible estimation of KS
statistics. In further experiments we have kept this population of
pixels unchanged.

Fig. 3 presents the exemplary results in the form of histograms
of the values of KS distances for all possible combinations of rings
for the first, second, third and fourth levels. It is seen that the dis-
tributions of values of KS distance change for different levels. There
are clearly visible changes of the shape of histograms at different
Fig. 2. The analysed image of one particular type of soil (bentonite).



Fig. 3. The histograms of the KS distance values for the levels 1, 2, 3 and 4. The horizontal axis represents the KS distance.

Fig. 4. The linear fit of the relationship of KS distance (logarithmic scale) versus the
levels of differences between the rings.
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levels (the higher the level the longer are the tails of the distribu-
tion). Detailed analyses performed for many other texture images
have confirmed, that there is an increase of the average value of
these distances at growing levels.

The next step in our approach is applying the linear regression
to the relationship of the average KS distance dKS as the function of
the level l. In particular, we have applied the regression to the log-
arithmic relation presented in the form

log2ðdKSÞ ¼ a0 þ a1lþ e ð2Þ

The coefficients a0 and a1 represent the estimated variables,
while e is an error of approximation. We are interested in the slope
a1 which is the most characteristic KS descriptor of the image. To
limit the influence to the outliers we have used the robust regres-
sion procedure (for example in Matlab program it is a function
robustfit.m (Matlab, 2012). The robust regression is a modification
of the least squares (LS) approach and is resistive to the outliers.
The LS in this approach is defined as

min
a0 ;a1

E ¼
X

lj

Xmj

i¼1

wij log2 dKSi
ðljÞ

� �
� yiðljÞ

� �2 ð3Þ

in which lj represents the succeeding levels of differences
(lj = 1, 2, . . .), dKSi(lj) corresponds to the known ith sample (the aver-
age value of dKSi on the level lj) and yi to the actually fitted variable
yi(j) = a1lj + a0. Each observed target is associated with different
weight wij, adapted at each iteration in a way to reduce the influ-
ence of the actual outliers on the summed squared error. In our
experiments we have used the well known Huber function
(Matlab, 2012)

wij ¼
1

log2 dKSi
ðljÞ

� �
� yiðljÞ

�����

����� ð4Þ
Fig. 4 presents the graphical results of application of the linear
regression to the data of soil image of Fig. 2. The measured (known)
distribution of the mean values of log2(dKS) for different levels l is
represented by the dashed line, and its linear approximation by
the solid one. The horizontal axis represents the succeeding levels
l and the vertical one – the logarithm of KS distance. The linear
approximating curve is a result of regression fit estimated in this
case in the following form

log2ðdKSÞ ¼ 0:0839l� 2:0228



Fig. 5. The images of the analyzed classes of soil.
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We can observe very good agreement of both curves starting
from the second level. The parameter a1 (the slope of the
approximating linear relation) was estimated in this case as
a1 = 0.0839.
The slope a1 of this relation represents the proposed KS descrip-
tor of the image. As we will see later its value is characteristic for
different types of images and may be used as the diagnostic feature
for discriminating among different classes.



Table 1
The average values of the descriptor a1 and its standard deviations for 12 classes of
the analysed soil images.

Class Mean(a1) Std (a1)

a 0.0519 0.0064
b 0.0727 0.0092
c 0.1755 0.0051
d 0.1450 0.0089
e 0.1440 0.0081
f 0.0845 0.0149
g 0.1591 0.0083
h 0.0410 0.0023
i 0.0918 0.0044
j 0.0277 0.0021
k 0.0652 0.0061
l 0.1057 0.0113
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The coefficient a0 of the linear equation (the constant term) was
relatively high and equal �2.0228. This value also changes with a
type of the image and its discriminative ability is also worth of
studying in the future.
3. The results of numerical experiments

To check the class discrimination ability of the proposed
numerical KS descriptor a1 we performed the experiments con-
cerning the recognition between different classes of soils. Twelve
classes have been considered in these experiments. They represent
different types of soils and grounds existing in the nature. Their
representative images are presented in Fig. 5. Some of them are
very similar (for example d and e, i and k) and hence very difficult
in recognition.

The image of all classes were divided into 16 smaller subimages
of an identical size. In this way each class of soil was represented
Table 2
The values of Fisher discriminant measure for recognition between all combinations of cla

Classes a b c d e f

a 1.33 10.73 6.05 6.35 1.5
b 1.33 7.21 3.99 4.14 0.4
c 10.73 7.21 2.17 2.39 4.5
d 6.05 3.99 2.17 0.05 2.5
e 6.35 4.14 2.39 0.05 2.5
f 1.53 0.49 4.54 2.53 2.58
g 7.26 4.94 1.22 0.82 0.91 3.2
h 1.25 2.76 18.24 9.25 9.94 2.5
i 3.68 1.41 8.78 3.97 4.17 0.3
j 2.83 3.99 20.52 10.60 11.41 3.3
k 1.06 0.49 9.89 5.31 5.57 0.9
l 3.03 1.61 4.25 1.94 1.97 0.8

Table 3
The AR values corresponding to the recognition of all pairs of classes at recognition of 12

a b c d e f

a 0 0.94 1 1 1 0.98
b 0.94 0 1 1 1 0.52
c 1 1 0 1 1 1
d 1 1 1 0 0.08 1
e 1 1 1 0.08 0 1
f 0.98 0.52 1 1 1 0
g 1 1 0.95 0.72 0.80 1
h 0.82 1 1 1 1 1
i 1 0.96 1 1 1 0.45
j 1 1 1 1 1 1
k 0.87 0.49 1 1 1 0.77
l 1 0.99 1 0.99 0.99 0.78
by 16 samples (192 analyzed samples altogether). Table 1 presents
the average values of the descriptor a1 and standard deviations for
each class of soils. As it is seen the mean values differ for different
classes. On the other hand the values of a1 for similar images (for
example class d and e) are very alike (the negligible differences
in the means and standard deviations). In each case we observe
very small values of the standard deviations. This is very good
prognostic for its application as a descriptor of the image.

To assess the discriminative ability of the proposed descriptor
we have determined its Fisher discriminative measure, defined in
the way (Duda, Hart, & Stork, 2003; Tan, Steinbach, & Kumar, 2006)

SABða1Þ ¼
jcAða1Þ � cBða1Þj
rAða1Þ þ rBða1Þ

ð5Þ

In this definition cA and cB are the mean values of the feature a1

for the images of the class A and B, respectively. The variables rA

and rB represent the standard deviations determined for both clas-
ses. The large value of SAB(a1) indicates good potential separation
ability of the feature a1 for the classes A and B. On the other side
small value of it means that this particular feature is not good for
the recognition between these classes. Table 2 presents the values
of the Fisher discrimination measure for all 66 two-class combina-
tions arranged among 12 considered classes.

As we can see the Fisher discriminative measure of the descrip-
tor assumes high values for most combinations of classes. The only
exceptions represent classes d and e, (the discriminative measure
equal 0.05), which correspond to the images, which were very sim-
ilar to each other.

To check the real performance of the KS descriptor in image rec-
ognition process we have analysed its class discriminating ability
by creating the ROC (Receiver Operating Characteristic) curves
(Tan et al., 2006) for all combinations of 2 classes (one positive
class and the second, treated as the negative one). The ROC curve
is a graphical approach for displaying the trade-off between true
sses.

g h i j k l

3 7.26 1.25 3.68 2.83 1.06 3.03
9 4.94 2.76 1.41 3.98 0.49 1.61
4 1.22 18.24 8.78 20.52 9.89 4.25
3 0.82 9.25 3.97 10.60 5.31 1.94
8 0.91 9.94 4.17 11.41 5.57 1.97

3.20 2.53 0.37 3.33 0.92 0.80
0 11.12 5.27 12.58 6.52 2.72
3 11.12 7.57 3.02 2.89 4.76
7 5.27 7.57 9.80 2.54 0.88
3 12.58 3.02 9.80 4.58 5.81
2 6.52 2.89 2.54 4.58 2.33
0 2.72 4.76 0.88 5.81 2.33

classes of soil on the basis of only descriptor a1.

g h i j k l

1 0.82 1 1 0.87 1
1 1 0.96 1 0.49 0.99
0.95 1 1 1 1 1
0.72 1 1 1 1 0.99
0.81 1 1 1 1 0.99
1 1 0.45 1 0.77 0.78
0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 0.76
1 1 1 0 1 1
1 1 1 1 0 1
1 1 0.76 1 1 0



Fig. 6. The distribution of mean differences between the values of AR corresponding to the KS descriptor and 4 Haralick descriptors: (a) contrast (con), (b) correlation (cor), (c)
energy (en) and (d) homogeneity (hom) for recognized classes.
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positive rate (TPR) and false positive rate (FPR) of a classifier, based
on the particular feature (Tan et al., 2006). In ROC curve TPR is plot-
ted along the y axis and FPR is shown on x axis. The point (TPR = 0,
FPR = 0) corresponds to the situation, when model predicts every
instance to be a negative class. The point (TPR = 1, FPR = 1) repre-
sents the case, when model predicts every instance to be a positive
class, and (TPR = 1, FPR = 0) represents an ideal model. Good classi-
fication model is located as close as possible to the upper left cor-
ner of the diagram. On the other hand the model that makes
random guesses resides along the main diagonal, connecting points
(TPR = 0, FPR = 0) and (TPR = 1, FPR = 1).

The quality of a classifier is measured by the area under curve
(AUC). AUC can be interpreted as an average ability of the model
for classifying observations accurately into two classes (Tan
et al., 2006). A higher area denotes higher discrimination ability.
If the model is perfect then the AUC is equal 1. If the model per-
forms like a random guess then the AUC is equal 0.5. The model
better than random should have area larger than 0.5. The overall
advantage of the investigated classifier model over the random
one is characterized in the form of the accuracy rate (AR) defined
as follows
AR ¼ 2� AUC� 1 ð6Þ

AR is the summary index of cumulative accuracy profile (also
known as Gini coefficient). It is interpreted as the ratio of the area
between the AUC of the rating model being validated and the AUC
of the random model. It shows the performance of the evaluated
model by depicting the percentage of right scores provided by
the model across different scores. The value AR = 0 means that
our classifier is equivalent to the random one. Any positive value
of it indicates advantage of the evaluated model over the random
one. The value 1 means ideal classification performance of the
model. Table 3 presents the values of AR of our classification model
applying only the feature a1 in the task of recognition of all pairs of
classes among 192 images representing 12 classes of soils (16 sub-
images of each class) presented in Fig. 5.

As we can see the classification model based on the proposed KS
descriptor is always better than the random one. For most combi-
nations of 2-classes its performance is ideal (perfect recognition of
classes, reflected by the value AR = 1). There is only one small value
of AR = 0.08 corresponding to the recognition between very similar
classes of pebbles (classes d and e). The average value of AR calcu-
lated over all pairs of images was equal 0.94.
4. Comparison to Haralick texture descriptors

The developed descriptor is based in practice on the statistics of
the group of pixels intensities in coaxial rings, and hence repre-
sents some counterpart to the texture Haralick descriptors based
on the so called gray-level co-occurrence matrices (Wagner,
1999). The co-occurrence matrices (the square matrices with
dimension N, where N is the total number of gray levels in the
image) focus on the distribution and the relationships among the
gray levels of the neighboring pixels of the image. The [i, j]th ele-
ment of this matrix is produced by counting the total occasions a
pixel with value i is adjacent to a pixel with value j and then sub-
sequently dividing the whole matrix by the total number of such
comparisons that are made. The adjacency can be defined to take
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place in each of four directions in a two-dimensional square pixel
image (horizontal, vertical, left and right diagonals) and as a result
we can calculate four such matrices. The texture features are calcu-
lated by averaging over all these four co-occurrences matrices.

From the co-occurrence matrices many Haralick texture
descriptors of statistical nature can be evaluated. In this compari-
son we will limit our consideration to only four: contrast (the local
contrast in an image) denoted as con, correlation (a correlation of
pixel pairs on gray-levels) denoted as cor, energy (the occurrence
of repeated pairs within an image) denoted as en and homogeneity
denoted as hom (coefficient characterizing the distribution of the
elements of a GLCM with its diagonal, which assumes value
between zero and one).

We have created the differences of AR measures corresponding
to the proposed KS descriptor and to the appropriate values repre-
senting these four Haralick descriptors for all combinations of two
classes of soils presented in Fig. 5. To determine the global measure
of the feature quality for each recognized class we have calculated
the mean value of the difference AR(a1) � AR(Haralick), where the
Haralick was one of four parameters: con, cor, en and hom.

Fig. 6 shows the plot of the differences e = mean(AR(a1) -
� AR(Haralick)) between the values of AR corresponding to our KS
descriptor and the texture Haralick descriptors. They have been
calculated for the recognition of all 16 representatives of the par-
ticular class from the other classes of soils. The succeeding classes
from 1 to 12 correspond to the texture images denoted in Fig. 5 by
the letters from a to l, respectively. The horizontal axis represents
the succeeding class and the vertical one – the appropriate mean
value of these differences. We can easily note, that for most classes
the performance of our descriptor as a diagnostic feature is better
than any of the Haralick descriptors (the positive values of the
differences).

Except one or two classes presented in each row the discrimina-
tion value of our descriptor was better than the traditional Haralick
descriptors. The average value of the AR measure of the proposed
KS descriptor for combination of all classes was equal 0.938. The
appropriate values for Haralick descriptors were AR(con) = 0.896,
AR(cor) = 0.882, AR(en) = 0.776, AR(hom) = 0.899.

5. Conclusions

The paper has presented the novel approach to the generation
of the numerical descriptors of the texture images. It is based on
the application of Kolmogorov–Smirnov statistical distance applied
to the pixel intensities in the coaxial rings formed for all possible
positions of the central pixel in the image. Instead of applying
the KS statistics to the whole image we divide the image into many
coaxial rings and apply this statistics to all combinations of rings,
placed in different sub-regions of the image. Thanks to this we
are able to propose the parametric characterization of the image,
which is better suited for finding the differences between the
sub-images belonging to different classes. Our proposition applies
linear regression to the curve representing the KS distances
between the pixel intensities of the succeeding rings versus differ-
ent levels of geometrical differences between the rings. The slope
of the regression curve represents the proposed descriptor.

We have compared our approach to the well-known texture
Haralick descriptors. Both approaches use the statistical informa-
tion contained in the mutual interrelations between groups of pix-
els. However, our proposed characterization of the image is of
different nature than that of Haralick. Instead of direct interrela-
tions between pixels in the close neighborhood we apply more
general information contained in the pixels characterized by the
KS statistical measure. In contrast to the co-occurrence approach
or local binary patterns our measure is blind to direction of pro-
cessing in a two-dimensional square pixel image. On the basis of
the numerical experiments concerning the images of 12 classes
of soils we have found that our descriptor is of better class discrim-
ination ability than the well-known Haralick descriptors. The only
weakness of the proposed approach is a bit longer time of calcula-
tions. The experiments comparing our method with Haralick
approach have shown higher time consumption (around 30%
higher) in the analysis of the same set of pictures.

Our approach to feature generation does not mean that the pro-
posed descriptor should replace any of the existing ones used in
texture characterization. Because of different nature of generation
it is ideally suited for cooperation with the set of the others. Many
independent features acting collectively increase the probability of
achieving better classification accuracy in the texture recognition
process.

For future studies, we plan to investigate also the discrimina-
tion ability of the second coefficient a0 of the linear regression or
another form of regression. On the basis of the introductory exper-
iments we expect that such approaches may also return the prom-
ising results. In the future we will also try applying our approach
for another types of images. Especially interesting are the images
of biomedical objects. The next point of research is to study the
cooperation of our descriptor with the descriptors, which are gen-
erated using other methods. This should allow to get even better
results of image characterization.
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