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The paper presents an automatic approach to the recognition of the industrial tools on the basis of their
image registered by the camera. The solved tasks include: the automatic localization of the tools in the
image, preprocessing of the image (binarization, noise removal, filling the holes, normalization, etc.),
generation of the numerical descriptors, verification of descriptors in the role of the diagnostic features,
selection of the features and final stage of classification of the tools. The efficiency of the developed

system has been verified on the example of exemplary set of industrial tools and the results of this
verification are presented and discussed in the paper.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Machine vision systems are being increasingly used for sophis-
ticated applications such as recognition and classification of differ-
ent processes. An important milestone in the development of
“intelligent” inspection systems has been the rapid growth of com-
puting power in recent years, coupled with the idea that we could
successfully emulate the low-level mechanisms of the brain.
Thanks to the methodology offered by the artificial intelligence
methods, they are able to solve difficult computational problems
arising in the task of object recognition.

The natural human visual system has the ability to recognize an
object despite changes in the object’s position in the input field, its
size, or its orientation. For many industrial applications involving
classification of elements under recognition, the machine vision
systems must also have this ability. Many industrial applications
of machine vision allow objects to be identified and classified by
their boundary contour or silhouette (Kim & Nam, 1995; Nabhani
& Shaw, 2002). An example of it is a robot recognition of industrial
parts and tools in the factor environment. In most assembly or
sorting lines several different types of tools of the shapes known
in advance are handled. Their recognition belongs to the problem
of object recognition or pattern matching (Duda, Hart, & Stork,
2003).

This work presents and investigates the application of machine
vision methods in the processing of single camera multi-positional
images for 2D object recognition and classification. The boundary
contour information was chosen as the basis for representing the
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chosen industrial tools at their recognition. The appropriately
preprocessed shape of the object may form the set of diagnostic
features, used as the input information to the classifier, responsible
for the final recognition of the object.

In our approach to the recognition/classification of industrial
components we divide the process into two major stages. The first
one is the extraction of the component of interest from the regis-
tered image and characterization of it by the numerical features
well representing its shape. In the second stage the numerical
descriptors, called also the diagnostic features, are put to the input
of automatic classifier, responsible for the final recognition. Many
recent solutions of classifiers, including artificial neural networks
may perform the role of final recognition. In this work we will ap-
ply two most efficient solutions: the random forest of decision
trees and Support Vector Machine (SVM).

The numerical experiments will be done on the set of simple
industrial tools differing by the shape, size, location and orienta-
tion in the input field. The preprocessing steps will extract the
component from the image, convert them to the normalized fea-
tures independent on their location, orientation and size. After
the selection process we get the most important features, which
are used as the input information to the classifier, performing the
final recognition.

2. The preprocessing stage

The image of the input field may contain the interesting object
represented in general by RGB color components and some smaller
elements representing the noise. The main task of this stage is to
localize the object and preprocess it in the way enabling to get
its numerical characterization.
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2.1. Binarization of the image

The binarization of the image is the process of converting the
image into the binary one, in which each pixel has one of two pos-
sible intensity levels: either one or zero. The first step is to convert
the color into gray levels. This is done for each pixel in the position
(x,y) by using standard relation (Gonzalez & Woods, 2011)

f(x,y) = 0.3R(x,y) + 0.59G(x,y) + 0.11B(x,y) (1)

where R, G and B represent the three color characterization of the
pixel. In the second stage the 256 gray levels are converted to a
black and white image by choosing the appropriate threshold value,
and classifying all pixels with values above this threshold as white,
and all other pixels as black. The important problem is to select the
correct threshold. It depends on the lighting conditions at the image
registration as well as on the type of the image. The threshold value
may be selected on the way of many trials or by applying the adap-
tive method, for example the Otsu method (Otsu,1979).

2.2. Localization of an object

The next step of processing is the localization of the tool in the
input field image. The basic assumption is that the tool occupies
the largest area in the field. Therefore we scan the whole field
searching for the largest compact region. This algorithm is called
the grain growth (Gonzalez & Woods, 2011; Soille, 2003) and is re-
lied on finding all pixels forming compact region.

The algorithm starts form the middle of the image looking for
the black pixel. Next we move to all possible black pixels adjacent
to the already found, increasing in this way the grain. The largest
found compact region composed of only black pixels is taken as
our object of interest. All other pixels of the image are treated as
the background and changed to the white color. The last step is
to fill the holes in the discovered object. This is done by applying
the morphological operation of opening and closing (Soille, 2003).

Fig. 1 illustrates the process of grain growth applied for discov-
ering the shape of a grinder. The first image (a) illustrates 1%
advancement, the second (b) 40% of advancement of grain growth,
the third (c) 100% of grain growth and the last one (d) the shape of
the tool after filling the holes.

2.3. Definition of numerical descriptors of the image

After recognizing the shape of the object the next step is to de-
fine the numerical descriptors characterizing the object. In our
solution we have relied on the geometrical descriptors. The basis
of this description is formed by the geometrical characterization
of the object, especially the real and convex areas of the object,
the real and convex perimeters, as well as box counting dimension
(Schroeder, 2006).

The real area of the object is treated as the total number of black
pixels forming the object. The perimeter is the number of boundary
pixels of the object. The convex parameters (area and perimeter)
have been defined using the concept of convex envelope fixed on

the boundary points of the shape of the object (Cormen, Leiserson,
Rivest, & Clifford, 2009).

The box counting dimension belongs to one of the measures fre-
quently used in fractal theory. It is a method of analyzing data of
complex patterns by breaking the object into smaller and smaller
pieces called boxes, and analyzing the pieces at each smaller scale.
The aim of this process is to examine how observations of detail
change with scale. In principle it measures how the length of the
complex curve is changing when the measurement is performed
with the increased accuracy (Schroeder, 2006).

Let us assume that the object under characterization is placed
on the surface covered with the set of regular cubes (squares in
2-dimensional space) of the size €. Then we count the number of
cubes that contain any fragment of the object. This number is evi-
dently dependent on the size of . Let us denote it as N(¢). Changing
the size ¢ we get different values of N(¢), generally increasing when
¢ is decreased.

In practice instead of ¢ we use the number s?> of elementary
cubes, each of the size ¢, fixed on the considered analyzed squared
area. The value of s is inversely proportional to ¢. In this way the
definition of the box counting dimension d can be written in the
form

log(N(s))
=1 ogls)

The value d, interpreted as the slope of the curve log(N(s)) with re-
spect to log(s), represents the box-counting dimension, characteriz-
ing the complexity of the curve. To use the box-counting notion we
have to define only one parameter — the number of boxes, depen-
dent on s. This number defines also the size of the elementary bin-
ary matrix s x s. We check if any fragment of the curve enters each
box. If yes, we put one in proper location of the matrix, in other case
zero. In this way we get the number N(s). Using the relation (2) we
get the value of the box counting dimension. The box counting
dimension can form the direct numerical descriptor, since according
to the definition it represents the relative value.

On the other hand from the analysis of the images it is evident
that the basic geometrical parameters (area and perimeter) could
not be used as the direct descriptors, since their values change with
the size of the object. Instead we have use some derivatives of
them, defined in a relative way. Let us denote the directly mea-
sured parameters by the following symbols:

A - real area of the object

A. - convex area of the object

P - perimeter of the object

P. - convex perimeter of the object

B - box counting dimension

On the basis of them we have defined the following descriptors,
being the potential diagnostic features (Kruk, Osowski, & Koktysz,
2007)

(2)

e Circularity ratio

47A

FC:T (3)
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Fig. 1. The illustration of the process of grain growth for discovering the grinder in the input field: (

(d) the final shape after filling the holes.

1% of advancement, (b) 40% of advancement, (c) 100% of advancement,
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e Convex circularity ratio

o Compactness factor

P2
Fr=— (5)

e Convex compactness factor
PZ
Fon=-% 6
ch Ac ( )
e Corrugation factor

P
Fce:FC (7)

o Shredding factor

Fr=g ®)
e The ratio of B and P

B

Fio = 75 ©)

e The ratio of B and P,

B
Fbpc :P_ (]O)
c

e The ratio of Band A

B
Fpa =2 (11)
e The ratio of B and A.
B
Fbac :ITC (12)

These 10 descriptors and the box counting dimension form the set
of 11 potential diagnostic features used by the classifier to recog-
nize the objects.

2.4. Selection of the features

The automatically generated descriptors may have different
impact on the classification process (Duda et al., 2003; Guyon &
Elisseeff, 2003). Some of them may occupy the same values for
different classes and some represent the noise from the point of
view of pattern recognition. Good feature should be characterized
by the stable values for samples belonging to the same class and at
the same time they should differ significantly for different classes.
Thus the important problem in the classification and machine
learning is to find out the features of the highest importance for
the problem solution. Observe that the elimination of some
features leads to the reduction of the dimensionality of the feature
space and improvement of performance of the classifier in the
testing mode for the data not taking part in learning.

From many known techniques of feature selection (Duda et al.,
2003; Guyon & Elisseeff, 2003) like principal component analysis,
analysis of correlation existing among features, correlation be-
tween the features and the classes, application of feature ranking
by applying the linear SVM, the analysis of mean and variance of
the features belonging to different classes, we have chosen the last
one.

The variance of the features corresponding to members of one
class should be as small as possible. On the other hand, to distin-
guish between different classes, the positions of means of feature
values for the data belonging to different classes should be sepa-
rated from each other as much as possible. Both requirements
are combined together to form the discrimination coefficient Sap(f)
defined for the feature f at recognition of two objects belonging to
different classes A and B

_ lealf) — cs(f)l
s - G40l 3

In this definition c4 and cg are the mean values of the feature fin the
class A and B, respectively. The variables g4 and op represent the
standard deviations determined for the respective class. The large
value of Sup(f) indicates good potential separation ability of the fea-
ture f for these two classes. On the other side its small value means
that this particular feature is not good for the recognition between
classes A and B. The set of descriptors of highest values of discrim-
ination coefficients form the optimal set of features.

3. Classification systems

The selected set of features is the diagnostic information put to
the input of the classifiers. To get the best results of pattern recog-
nition we have to apply the most efficient classifiers. According to
the actual knowledge to the best solutions of the classifiers belong
the Support Vector Machine (Schoélkopf & Smola, 2002; Vapnik,
1998) and Breiman random forest of the decision trees (Breiman,
2001). These two systems of classifiers implemented in Matlab
(Matlab user manual with toolboxes, 2012) will be applied and
studied in the paper.

Basically the SVM is a linear machine, working in the high
dimensional feature space formed by the non-linear mapping of
the N-dimensional input vector x into a L-dimensional feature
space (L > N) through the use of a kernel function K(x,X;). It is
known as an excellent classifier of good generalization ability
(Vapnik, 1998). The learning problem of SVM is formulated as
the task of separating the learning vectors into two classes of the
destination values either d; = 1 (one class) or d; = —1 (the opposite
class), with the maximal separation margin. The separation margin
formed in the learning stage according to the assumed value of the
regularization constant C provides some immunity of this classifier
to the noise, inevitably contained in the testing data.

The great advantage of SVM is the unique formulation of learn-
ing problem leading to the quadratic programming with linear
constraints, which is easy to solve. The SVM of the Gaussian kernel
has been used in our application. The hyperparameters ¢ of the
Gaussian function and the regularization constant C are usually ad-
justed by repeating the learning experiments for the set of their
predefined values and choosing the best one at the validation data
sets. The typical values of these parameters for the normalized in-
put data are y = 1 and C = 1000. To deal with a problem of many
classes the one against one or one against all approaches working
on a principle of the majority voting (Schélkopf & Smola, 2002) are
usually applied. In our solution we have applied the one against
one approach, since this approach lead to the better total results
of recognition.
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The Breiman (Breiman, 2001) random forest is an ensemble of
many decision trees and outputs the class pointed by the majority
of the individual trees. The method combines “bagging” idea and
the random selection of features for each node in order to construct
a collection of decision trees with controlled variation. Each tree in
the forest is constructed in a way providing the highest degree of
independence.

Assume that the number of training cases is p, and the number
of input variables in the classifier be N. Denote by m the number of
input variables to be used to determine the decision at a node of
the tree; m should be less than N. Choose a training set for the tree
by choosing n times (with replacement) from all p available train-
ing cases. Use the rest of the cases to estimate the error of the tree,
by predicting their classes. For each node of the tree, choose ran-
domly m variables on which to base the decision at that node.
Determine the best split based on these m variables in the training
set. Allow each tree to be fully grown and not pruned.

The class prediction of a new sample is done by pushing it down
the set of trees. Each tree assigns the label of the training sample in
the terminal leave it ends up in. The same procedure is iterated
over all trees in the ensemble, and the majority of votes of all trees
in the forest dictates the class.

4. The results of numerical experiments
4.1. Data base

In the numerical experiments we have recognized 9 classes of
the industrial tools. The recognized classes include: class 1 -
setsquares, class 2 - magnifying glasses, class 3 - hammers, class
4 - boxes, class 5 — screwdrivers, class 6 — pliers, class 7 — drills,
class 8 - discs for grinders, class 9 — grinders. The single exemplary
representatives of each class are presented in Fig. 2.

In the first set of experiments of the pattern recognition we
have represented each class by 33 individuals, differing signifi-
cantly from each other. Fig. 3 presents the exemplary set of tools

(7

representing the class of hammers. As it is seen they differ signif-
icantly by the shape, size, proportion of parameters, orientation,
position in the viewing field, etc.

In the second set of experiments we have checked how our
automatic system is resistive to different types of noise disturbing
the individual image. This time we have assumed that the system
recognizes one chosen representative of each tool, represented in a
different scale, various positions in the viewing field, at the pres-
ence of some cracks, traces of dust of different shape, existence
of blurs, etc. The number of representatives of each class was also
equal 33. The exemplary set of grinder’s discs used in experiments
are presented in Fig. 4.

4.2. The results of the first set of experiments

The aim of the first experiments was to check how the devel-
oped system is resistive to the changes of the shape of the tools,
such as that presented in Fig. 3 for hammers. In the first stage of
preprocessing, after extraction of the shapes of each tool, the most
important was the generation and selection of the diagnostic fea-
tures defined in Section 2.3. We have checked the discriminative
strength of each descriptor for all combinations of classes (36 pairs
of 2-class problems). For each pair of classes the value of Fisher dis-
criminant coefficient has been calculated and then averaged over
all pairs. The cumulative diagnostic value of the descriptor f
(k=1,2,...,11) is defined as

11
S0 = 36 2_Si(f) (14

I
i#j
Fig. 5 presents the distribution of the values of S(f;) for the succeed-
ing features, averaged over all combinations of classes.As it is seen
the highest cumulative value represents shredding factor, which is
over two times better than the next one (the convex compactness
factor). The least discriminative values are associated with all four
ratios of box counting dimensions with respect to the geometrical

y

(2 (3

6

Fig. 2. The examples of tools used for recognition in the numerical experiments (each tool is represented by a single example).
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Fig. 3. The set of 33 images of hammer used in the experiments.

parameters. However the box counting dimension B itself is reason-
ably good.

To check the quality of such values of the discriminative mea-
sures of the diagnostic features we have mapped the data into a
2-dimensional system represented by two best descriptors. Fig. 6
presents the distribution of data in two dimensional space formed
by F, and F., (two best descriptors).

We can see the interesting distribution of the data points. The
representatives of classes are placed in different regions of the
plane, usually in the compact sets. However, some classes interlace
with the other, making their recognition impossible. It is evident,
that the recognition of classes using only two diagnostic features
is impossible. We have to use richer set of descriptors. To get their
optimal quantity we have made introductory experiments of rec-
ognition at application of varying number of the features arranged
in the decreasing order of their discriminative ability. As the clas-
sifier we have applied the Gaussian kernel SVM working in one
against one mode. Two third of the data has been used in learning
and the rest (1/3 of data) in testing. As a results of these experi-

ments we have found the optimal number of descriptors is equal
5 (Fy, Fen, Fn, Fee and B).

Next we have performed the 10 fold cross validation experi-
ments of recognition using these 5 diagnostic features as the input
information for the Gaussian kernel SVM operating in one against
one mode. The data was divided into 10 parts. Nine parts were
used in learning and the last one in testing. In each experiment
the testing part was exchanged with one of the learning parts.
The results of testing were averaged. The mean value of the relative
testing error was equal 8.42%. Table 1 depicts the confusion matrix
of the recognition, presented in the form of recognition results con-
cerning the testing data not taking part in learning in all 10 cross
validation experiments.

The same experiments have been repeated using the random
forest as the classifier. Two third of data points were used in learn-
ing and 1/3 of testing. The best results of recognition have been ob-
tained by assuming m = 3 variables used to determine the decision
at a node. The best results of recognition obtained at application of
30 decision trees in the forest was this time worse than that at

tions (2013), http://dx.doi.org/10.1016/j.eswa.2013.02.030
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Fig. 4. The exemplary set of noisy images of discs of grinder used in the second type of experiments.
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Table 1
The confusion matrix of recognition of 9 classes of industrial tools.
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application of SVM. The mean value of the relative testing error
was equal 10.46%.

4.3. The results of the second set of experiments

The second set of experiments aimed on checking the sensitiv-
ity of the developed system on the existence of the noise and other
disturbances existing in the image of the tools. This time the origi-
nal shape of the tool was unique and the disturbances have been
introduced artificially by us. The exemplary set of noisy images
of discs of grinder used in the second type of experiments was
shown in Fig. 4. The other tools have been also disturbed in a sim-
ilar fashion.

Similarly to the previous experiments for each pair of classes we
have calculated the value of Fisher discriminant coefficients and
then averaged over all pairs. The cumulative diagnostic value of
the succeeding descriptors arranged in the decreasing order are
presented in Fig. 7. Once again the highest cumulative value repre-
sents shredding factor, which is more than three times higher than
the next one (the compactness factor). The least discriminative val-
ues are associated with the box counting dimension and its ratio to
the geometrical parameters. To check the discriminative quality of
two best descriptors we have presented the distribution of classes
in a 2-dimensional system (Fig. 8(a)). As it is seen most of the rep-
resentatives of the classes form the compact clusters placed very
close to each other. Only single samples of different classes are
interlaced with each other (one sample of class 9 placed close t
class 2, the representatives of class 1 very close to class 4).

To check how reliable is application of Fisher measure of
discrimination ability of descriptors we have compared the data
distribution at application of only two worst features (B and F,).
It is shown in Fig. 8(b). As it is seen this time the representatives

Fisher measure
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Numerical descriptors

Fig. 7. The averaged cumulative values of Fisher discriminant for the succeeding
features in the second set of experiments.
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Fig. 8. The distribution of data points in the coordinate system represented by (a)
two most important features: shredding and corrugation factors and (b) two least
significant descriptors.

of all classes are interlaced with each other making the recognition
of classes very hard.

The experiments of recognition have been made by applying the
Gaussian kernel SVM working in one against one mode and ran-
dom forest of decision trees at m =4, found to be the best. Te
experiments have been conducted in the same way as in the first
case (two third of the data used in learning and the rest in testing,
experiments arranged in a 10-fold cross validation). The best re-
sults have been obtained at application of the first four descriptors:
F;, Fee, Fy, Fop used as the diagnostic features.

The averaged results of testing obtained at application of SVM
and random forest have been compared. This time the mean value
of the relative testing error was much smaller and equal 1.12% for
SVM and only 0.67% for random forest. Table 2 shows the

Table 2
The confusion matrix of recognition of 9 classes of industrial tools in the second set of
experiments.
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confusion matrix of the pattern recognition at using the random
forest as the classifier system. They are presented in the form of
recognition results of testing data not taking part in learning in
all 10 cross validation experiments.

As expected we have got much smaller error of recognition,
since the shape of each tool was this time known in advance and
the only differences among the samples have been caused by the
effect of noise, artificially introduced to the original images.

5. Conclusions

The paper has presented the automatic approach to the recogni-
tion of the industrial tools by using the methods based on the arti-
ficial intelligence and advanced image processing. The boundary
contour information was chosen as an effective method of repre-
senting the industrial components under recognition.

The starting point of the recognition procedure is the camera
image of the tools. The succeeding stages of developed procedure
included: the automatic localization of the tools in the image, pre-
processing of the image such as the binarization, noise removal,
filling the holes, and normalization, generation of the numerical
descriptors characterizing the shape of the tools, verification of
descriptors in the role of the diagnostic features, selection of the
features and final stage of classification of the tools. Two different
solutions of the final classifier system have been tried. One was
based on Support Vector Machine and the second applied the ran-
dom forest of the decision trees. Both belong to the most efficient
automatic classification systems.

The efficiency of the developed system has been verified on the
example of 9 exemplary sets of the industrial tools. The tools

differing significantly with a shape, size and location have been
considered first in the recognition process. The numerical results
of this verification have been presented and discussed in the paper.
The next experimental set assumed recognition of the known in
advance shape of the tools under the noisy environment. Experi-
mental results show the good performance of the proposed system
both in a noise-free and the noisy environment.
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